Optically transparent organs: seeing is believing

Dr. Douglas Shepherd Department of Physics, College of Liberal Arts and Sciences Pediatric Heart Lung Center, School of Medicine University of Colorado Denver | Anschutz Medical Campus <u>http://clasfaculty.ucdenver.edu/dshepherd</u>

University of Colorado Denver | Anschutz Medical Campus

Recent advancements have made rendering entire animal transparent possible!

SCIENCE/TECH

3D Transparent Organs Will Help Doctors Make Better Diagnoses, Biomedical Discoveries

Researchers from Caltech discovered a speedier way of "clearing" tissues, which would allow doctors to see through organs and the entire body. Bin Yang and Vivlana Gradinaru

Jul 31, 2014 02:34 PM By Lecia Bushak

Recent advancements have made rendering entire animal transparent possible!

SCIENCE/TECH

3D Transparent Organs Will Help Doctors Make Better Diagnoses, Biomedical Discoveries

Jul 31, 2014 02:34 PM By Lecia Bushak

Researchers from Caltech discovered a speedier way of "clearing" tissues, which would allow doctors to see through organs and the entire body. Bin Yang and Viviana Gradinaru

Recent advancements have made rendering entire animal transparent possible!

SCIENCE/TECH

3D Transparent Organs Will Help Doctors Make Better Diagnoses, Biomedical Discoveries

Jul 31, 2014 02:34 PM By Lecia Bushak

Researchers from Caltech discovered a speedier way of "clearing" tissues, which would allow doctors to see through organs and the entire body. Bin Yang and Viviana Gradinaru

The Invisible Mouse 09/10/2014 Rachael Moeller Gorman

A new method quickly and gently turns a whole mouse transparent. Could this change biological imaging forever? Find out...

Recent advancements have made rendering entire animal transparent possible!

SCIENCE/TECH

3D Transparent Organs Will Help Doctors Make Better Diagnoses, Biomedical Discoveries

Jul 31, 2014 02:34 PM By Lecia Bushak

Researchers from Caltech discovered a speedier way of "clearing" tissues, which would allow doctors to see through organs and the entire body. Bin Yang and Viviana Gradinaru The Invisible Mouse 09/10/2014 Rachael Moeller Gorman

A new method quickly and gently turns a whole mouse transparent. Could this change biological imaging forever? Find out...

Scientists create see-through mouse and rat bodies

Recent advancements have made rendering entire animal transparent possible!

SCIENCE/TECH

3D Transparent Organs Will Help Doctors Make Better Diagnoses, Biomedical Discoveries

Jul 31, 2014 02:34 PM By Lecia Bushak

Researchers from Caltech discovered a speedier way of "clearing" tissues, which would allow doctors to see through organs and the entire body. Bin Yang and Viviana Gradinaru The Invisible Mouse 09/10/2014 Rachael Moeller Gorman

A new method quickly and gently turns a whole mouse transparent. Could this change biological imaging forever? Find out...

Scientists create see-through mouse and rat bodies

Speaking of Science

Why a see-through mouse is a big deal for scientists

This could revolutionize how we measure pathology samples and understand structural/developmental biology

While scientists have attempted to create see-through organ and tissue samples since the 1800s, researchers have relied primarily on the sectioning of samples - slicing organs into extremely thin cross sections and examining these pieces in succession.

"That's been useful but it's also been slow and tedious," said senior study author Viviana Gradinaru, an assistant professor of biology and biological engineering at Caltech.

Recent advancements in tissue clearing have enabled researchers to study nerve connections and organ structures without having to slice them up, providing scientists with new insights into previously hidden anatomical structures.

Moving from physically cutting up a brain

To making it see-through!

Learning Objectives

- 1. Explain why tissue scatters light and how one can alter the light scattering properties of tissue.
- 2. Describe laser-induced fluorescence and light-sheet fluorescence microscopy.
- 3. Summarize how combining these two methods allows one to measure structures within intact tissue and organs.
- 4. Theorize how these advancements may help with pressing public health issues.

Learning Objectives

- 1. Explain why tissue scatters light and how one can alter the light scattering properties of tissue.
- 2. Describe laser-induced fluorescence and light-sheet fluorescence microscopy.
- 3. Summarize how combining these two methods allows one to measure structures within intact tissue and organs.
- 4. Theorize how these advancements may help with pressing public health issues.

"About the transparentizing of human and animal preparations" Published in 1914 by Werner Spalteholz

notiert hat, so muß man diese durch Rechnung bestimmen. Man geht dabei am besten von der durch Landolt¹) aufgestellten Formel aus:

$$p\frac{n-1}{d} = p_1\frac{n_1-1}{d_1} + p_2\frac{n_2-1}{d_2} + \cdots$$

in der p das Gewicht, n den Brechungsindex, d die Dichte des Gemisches, p_1, p_2, \ldots die Gewichte, n_1, n_2, \ldots die Brechungsindices, d_1, d_2, \ldots die Dichten seiner Komponenten bezeichnen. Da wir nur das Verhältnis der beiden Bestandteile kennen lernen wollen, verwenden wir die Formel in der Form:

$$\frac{p_1}{p_2} = \frac{\frac{n_2 - 1}{d_2} - \frac{n - 1}{d}}{\frac{n - 1}{d} - \frac{n_1 - 1}{d_1}}$$

Leider gibt auch diese Formel, die als die zuverlässigste gilt, nicht immer ganz genaue Resultate.

Für die von mir hauptsächlich benutzten Flüssigkeiten habe ich nach wiederholten eigenen Messungen folgende Zahlen zugrunde gelegt:

Wintergrünöl, künstlich	$n_D = 1,538,$	spez.	Gew.	= 1,188
Safrol	$n_D = 1,542,$	"	"	= 1,102
Benzylbenzoat	$n_D = 1,570,$	"	"	= 1,121
Isosafrol, farblos	$n_D = 1,577,$	"	"	= 1,115

Die Neuheit des Problems und der Wunsch, über verschiedene scheinbare Unstimmigkeiten Klarheit zu erhalten,

 Poggendorfs Annal. d. Phys. u. Chemie 1864, Bd. 123, S. 595.
Weiteres s. darüber Ostwald, Lehrbuch d. allgem. Chemie. 2. Aufl. 1891, 1. Bd., S. 416 ff.

55

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

Spalteholz 1914

notiert hat, so muß man diese durch Rechnung bestimmen. Man geht dabei am besten von der durch Landolt¹) aufgestellten Formel aus:

$$p\frac{n-1}{d} = p_1\frac{n_1-1}{d_1} + p_2\frac{n_2-1}{d_2} + \cdots$$

in der p das Gewicht, n den Brechungsindex, d die Dichte des Gemisches, p_1, p_2, \ldots die Gewichte, n_1, n_2, \ldots die Brechungsindices, d_1, d_2, \ldots die Dichten seiner Komponenten bezeichnen. Da wir nur das Verhältnis der beiden Bestandteile kennen lernen wollen, verwenden wir die Formel in der Form:

$$\frac{p_1}{p_2} = \frac{\frac{n_2 - 1}{d_2} - \frac{n - 1}{d}}{\frac{n - 1}{d} - \frac{n_1 - 1}{d_1}}$$

Leider gibt auch diese Formel, die als die zuverlässigste gilt, nicht immer ganz genaue Resultate.

Für die von mir hauptsächlich benutzten Flüssigkeiten habe ich nach wiederholten eigenen Messungen folgende Zahlen zugrunde gelegt:

-					
Wintergrünöl,	künstlich	$n_D = 1,538,$	spez.	Gew.	= 1,188
Safrol		$n_D = 1,542,$	"	"	= 1,102
Benzylbenzoat		$n_D = 1,570,$	39	"	= 1,121
Isosafrol, farbl	os	$n_D = 1,577,$	79	79	= 1,115.

Die Neuheit des Problems und der Wunsch, über verschiedene scheinbare Unstimmigkeiten Klarheit zu erhalten,

1) Poggendorfs Annal. d. Phys. u. Chemie 1864, Bd. 123, S. 595. Weiteres s. darüber Ostwald, Lehrbuch d. allgem. Chemie. 2. Aufl. 1891, 1. Bd., S. 416 ff.

55

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

Spalteholz 1914

notiert hat, so muß man diese durch Rechnung bestimmen. Man geht dabei am besten von der durch Landolt¹) aufgestellten Formel aus:

$$p\frac{n-1}{d} = p_1\frac{n_1-1}{d_1} + p_2\frac{n_2-1}{d_2} + \cdots$$

in der p das Gewicht, n den Brechungsindex, d die Dichte des Gemisches, p_1, p_2, \ldots die Gewichte, n_1, n_2, \ldots die Brechungsindices, d_1, d_2, \ldots die Dichten seiner Komponenten bezeichnen. Da wir nur das Verhältnis der beiden Bestandteile kennen lernen wollen, verwenden wir die Formel in der Form:

$$\frac{p_1}{p_2} = \frac{\frac{n_2 - 1}{d_2} - \frac{n - 1}{d}}{\frac{n - 1}{d} - \frac{n_1 - 1}{d_1}}.$$

Leider gibt auch diese Formel, die als die zuverlässigste gilt, nicht immer ganz genaue Resultate.

Für die von mir hauptsächlich benutzten Flüssigkeiten habe ich nach wiederholten eigenen Messungen folgende Zahlen zugrunde gelegt:

Wintergrünöl,	künstlich	$n_D = 1,538,$	spez.	Gew.	= 1,188
Safrol		$n_D = 1,542,$	"	39	= 1,102
Benzylbenzoat		$n_D = 1,570,$	39	"	= 1,121
Isosafrol, farbi	los	$n_D = 1,577,$	"	79	= 1,115.

Die Neuheit des Problems und der Wunsch, über verschiedene scheinbare Unstimmigkeiten Klarheit zu erhalten,

 Poggendorfs Annal. d. Phys. u. Chemie 1864, Bd. 123, S. 595.
Weiteres s. darüber Ostwald, Lehrbuch d. aligem. Chemie. 2. Aufl. 1891, 1. Bd., S. 416 ff.

55

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

Spalteholz 1914 Borlinghaus and Multer, Leica Microsystems 2014

notiert hat, so muß man diese durch Rechnung bestimmen. Man geht dabei am besten von der durch Landolt¹) aufgestellten Formel aus:

$$p\frac{n-1}{d} = p_1\frac{n_1-1}{d_1} + p_2\frac{n_2-1}{d_2} + \cdots$$

in der p das Gewicht, n den Brechungsindex, d die Dichte des Gemisches, p_1, p_2, \ldots die Gewichte, n_1, n_2, \ldots die Brechungsindices, d_1, d_2, \ldots die Dichten seiner Komponenten bezeichnen. Da wir nur das Verhältnis der beiden Bestandteile kennen lernen wollen, verwenden wir die Formel in der Form:

$$\frac{p_1}{p_2} = \frac{\frac{n_2 - 1}{d_2} - \frac{n - 1}{d}}{\frac{n - 1}{d} - \frac{n_1 - 1}{d_1}}.$$

Leider gibt auch diese Formel, die als die zuverlässigste gilt, nicht immer ganz genaue Resultate.

Für die von mir hauptsächlich benutzten Flüssigkeiten habe ich nach wiederholten eigenen Messungen folgende Zahlen zugrunde gelegt:

Wintergrünöl,	künstlich	$n_D = 1,538,$	spez.	Gew.	= 1,188
Safrol		$n_D = 1,542,$	"	"	= 1,102
Benzylbenzoat		$n_D = 1,570,$	37	"	= 1,121
Isosafrol, farbl	os	$n_D = 1,577,$	39	"	= 1,115.

Die Neuheit des Problems und der Wunsch, über verschiedene scheinbare Unstimmigkeiten Klarheit zu erhalten,

 Poggendorfs Annal. d. Phys. u. Chemie 1864, Bd. 123, S. 595.
Weiteres s. darüber Ostwald, Lehrbuch d. allgem. Chemie. 2. Aufl. 1891, 1. Bd., S. 416 ff.

55

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

Spalteholz 1914 Borlinghaus and Multer, Leica Microsystems 2014

uncleared brain

PARS cleared brain stored in RIMS for 3 months

The search for the magic bullet...or...an excuse to make up a lot of acronyms

Technique	Clearing time for whole-brain	Complete transparency	Fluorescent quenching	Tissues validated	Significant contribution to field	Drawback	CLARITY (Chung	10 days	10 days	Yes	No	Rodent, human and non-human primate brains,	Hydrogel- embedding; best tissue quality when	ETC difficult, customized equipment,													
BABB, THF, DBE(Beck er et al., 2012; Dodt et al., 2007)	hours-days	Yes, but tissue shrinkage	Yes (Ertürk et al., 2012a; Ke et al., 2013)	Rodent brain, spinal cord, peripheral tissues	Among first clearing reagents	Harsh reagents (Ke et al., 2013)	Deisseroth , 2013; Chung et al., 2013; Kim et al., 2013)				spinal cord, zebrafish (Zhang et al., 2014)	performed correctly; IHC/F	expensive (Chung et al., 2013)														
ClearT2(Ku wajima et al., 2013)	days	No	No-partial (Ke et al., 2013)	Rodent brain and embryo	Less quenching than BABB; novel reagents	Immunlabeling only through 120 µm	Advanced CLARITY (Tomer et	3 weeks	Yes	No	Whole mouse brain	No ETC – passive thermal CLARITY, COLM, CLARITY objectives, rapid	Requires COLM set-up														
Scale (A2, U2) (Hama et	weeks- months (slowest)	Yes, but tissue swelling (Chung et al.,	No-minimal (Ke et al., 2013;	Mouse brain, embryo (Hama et al., 2011)	Transparency without quenching; IHC/F	Slow; tissue deformation; potential	al., 2014; Zhang et al., 2014)						imaging protocol														
al., 2011)		2013; Ke et al., 2013; Kuwajima et al., 2013)	Kuwajima et al., 2013)																protein loss with clearing (Ke et al., 2013)	with clearing (Ke et al., 2013)	protein loss with clearing (Ke et al., 2013) SeeDB (Ke et al., 2013; Ke	days (fastest)	No	No	Young rodent brains (Ke et al., 2013)	No tissue deformation, fast	Tissue browning, incomplete
3D/SCO (Ertürk et	< week	Yes	No, but signal decay	Peripheral/central organs, embryos,	Balance between rapidity and guality	Requires	and Imai, 2014)									cleaning,											
al., 2012a; Ertürk and Bradke, 2013)			win days (Ertürk et al., 2012a; Ertürk and Bradke, 2013)	tumors (Ertürk and Bradke, 2013); Central (Erturk et al., 2012b) and peripheral (Jung et al., 2014) nerves	of cleared tissue; imaging protocol	sample imaging; IHC- very limited	CUBIC (Susaki et al., 2014) PACT, PARS	2 weeks days-weeks	Mostly-Yes Yes	No	Rodent and non- human primate brain All major rodent organs; whole- body clearing	CUBIC informatics, optimized Scale (Susaki et al., 2014) optimized/simplified CLARITY; permits long-term tissue storage: IHC/E	Brain only; potential protein loss during clearing Slower than 3DISCO														

The search for the magic bullet...or...an excuse to make up a lot of acronyms

Technique	Clearing time for whole-brain	Complete transparency	Fluorescent quenching	Tissues validated	Significant contribution to field	Drawback	CLARITY (Chung and Deisseroth , 2013; Chung et al., 2013; Kim et al., 2013)	10 days	Yes	No	Rodent, human and non-human primate brains,	Hydrogel- embedding; best tissue quality when	ETC difficult, customized equipment,
BABB, THF, DBE(Beck er et al., 2012; Dodt et al., 2007)	hours-days	Yes, but tissue shrinkage	Yes (Ertürk et al., 2012a; Ke et al., 2013)	Rodent brain, spinal cord, peripheral tissues	Among first clearing reagents	Harsh reagents (Ke et al., 2013)					spinal cord, zebrafish (Zhang et al., 2014)	performed correctly; IHC/F	expensive (Chung et al., 2013)
ClearT2(Ku wajima et al., 2013)	days	No	No-partial (Ke et al., 2013)	Rodent brain and embryo	Less quenching than BABB; novel reagents	Immunlabeling only through 120 µm	Advanced CLARITY (Tomer et	3 weeks	Yes	No	Whole mouse brain	No ETC – passive thermal CLARITY, COLM, CLARITY objectives, rapid	Requires COLM set-up
Scale (A2, U2) (Hama et	weeks- months (slowest)	Yes, but tissue swelling (Chung et al.,	No-minimal (Ke et al., 2013;	Mouse brain, embryo (Hama et al., 2011)	Transparency without quenching; IHC/F	Slow; tissue deformation; potential	al., 2014; Zhang et al., 2014)					imaging protocol	
al., 2011)		2013; Ke et al., 2013; Kuwajima et al., 2013)	Kuwajima et al., 2013)			protein loss with clearing (Ke et al., 2013)	SeeDB (Ke et al., 2013; Ke	days (fastest)	No	No	Young rodent brains (Ke et al., 2013)	No tissue deformation, fast	Tissue browning, incomplete
3D/SCO (Ertürk et	< week	Yes	No, but signal decay	Peripheral/central organs, embryos,	Balance between rapidity and quality	Requires immediate	and Imai, 2014)						cicaring,
al., 2012a; Ertürk and Bradke, 2013)			win days (Ertürk et al., 2012a; Ertürk and Bradke, 2013)	tumors (Ertürk and Bradke, 2013); Central (Erturk et al., 2012b) and peripheral (Jung et al., 2014) nerves	of cleared tissue; imaging protocol	sample imaging; IHC- very limited	CUBIC (Susaki et al., 2014) PACT, PARS	2 weeks days-weeks	Mostly-Yes Yes	No	Rodent and non- human primate brain All major rodent organs; whole- body clearing	CUBIC informatics, optimized Scale (Susaki et al., 2014) optimized/simplified CLARITY; permits long-term tissue	Brain only; potential protein loss during clearing Slower than 3DISCO

So many techniques!! What is different about all of them?

Four general categories:

1. Solvent-based

Richardson and Lichtman Cell 2015

Four general categories:

- 1. Solvent-based
- 2. Simple immersion

University of Colorado Denver | Anschutz Medical Campus

Richardson and Lichtman Cell 2015

Four general categories:

- 1. Solvent-based
- 2. Simple immersion
- 3. Hyper hydration

Four general categories:

- 1. Solvent-based
- 2. Simple immersion
- 3. Hyper hydration
- 4. Hydrogel embedding

University of Colorado

Denver | Anschutz Medical Campus

Richardson and Lichtman Cell 2015

Four general categories:

- 1. Solvent-based
- 2. Simple immersion
- 3. Hyper hydration
- 4. Hydrogel embedding

University of Colorado

Denver | Anschutz Medical Campus

Richardson and Lichtman Cell 2015

Step 1: hydrogel monomer infusion (days 1-3)

Chung et al Nature 2013

Chung et al Nature 2013

University of Colorado Denver | Anschutz Medical Campus

Now what? We can't the eye(s) anymore!

University of Colorado Denver | Anschutz Medical Campus

Chung et al Nature 2013

Can't see anything in the brain either!

Chung et al Nature 2013

Denver | Anschutz Medical Campus

Need another way to "see" inside the tissue

Chung et al Nature 2013

University of Colorado Denver | Anschutz Medical Campus

Learning Objectives

- 1. Explain why tissue scatters light and how one can alter the light scattering properties of tissue.
- 2. Describe laser-induced fluorescence and light-sheet fluorescence microscopy.
- 3. Summarize how combining these two methods allows one to measure structures within intact tissue and organs.
- 4. Theorize how these advancements may help with pressing public health issues.

What is a laser?

What is a laser?

THE LASER

All the animations and explanations on www.toutestquantique.fr

What is laser-induced fluorescence?

How can we attach flourophores to a biological target? 1. Antibody labels

How can we attach flourophores to a biological target?

- 1. Antibody labels
- 2. Fluorescent proteins

Tomer et al Nature Protocols 2014

Microscope restrictions mean back to the guillotine!

University of Colorado Denver | Anschutz Medical Campus

Tomer et al Nature Protocols 2014

How does LSFM work?

LSFM has mainly been used to image small model animals

Truong et al Nature Methods 2011

LSFM has mainly been used to image small model animals

Truong et al Nature Methods 2011

You can build an LSFM almost like LEGOs now!

Water-filled Gold-plate Sample Chamber Calass Panel Connectors for Petier Cooling

OpenSPIN

University of Colorado Denver | Anschutz Medical Campus

We have cleared tissue, fluorescent labels, and an appropriate fluorescent microscope

Truong et al Nature Methods 2011 Chung et al Nature 2013 Tomer et al Nature Protocols 2014

Learning Objectives

- 1. Explain why tissue scatters light and how one can alter the light scattering properties of tissue.
- 2. Describe laser-induced fluorescence and light-sheet fluorescence microscopy.
- 3. Summarize how combining these two methods allows one to measure structures within intact tissue and organs.
- 4. Theorize how these advancements may help with pressing public health issues.

Combining LSFM and optically cleared tissue

If you are really patient, you can reconstruct a whole mouse brain

Tomer et al Nature Protocols 2014

We can also measure lung structure

We can also measure lung structure

University of Colorado Denver | Anschutz Medical Campus

Learning Objectives

- 1. Explain why tissue scatters light and how one can alter the light scattering properties of tissue.
- 2. Describe laser-induced fluorescence and light-sheet fluorescence microscopy.
- 3. Summarize how combining these two methods allows one to measure structures within intact tissue and organs.
- 4. Theorize how these advancements may help with pressing public health issues.

Application to animal models of disease

Application to animal <u>and</u> <u>human models of disease</u>

Yang et al Cell 2015

Application to analyzing structural changes in the brain from external events

ARTICLE

doi:10.1038/nature15698

Basomedial amygdala mediates top-down control of anxiety and fear

Avishek Adhikari^{1,2}*, Talia N. Lerner^{1,2}*, Joel Finkelstein¹*, Sally Pak¹, Joshua H. Jennings^{1,2}, Thomas J. Davidson^{1,2}, Emily Ferenczi^{1,3}, Lisa A. Gunaydin^{1,3}, Julie J. Mirzabekov¹, Li Ye^{1,2}, Sung-Yon Kim^{1,3}, Anna Lei¹ & Karl Deisseroth^{1,2,3,4,5}

Application to analyzing structural changes in the brain from external events

ARTICLE

doi:10.1038/nature15698

Basomedial amygdala mediates top-down control of anxiety and fear

Avishek Adhikari^{1,2}*, Talia N. Lerner^{1,2}*, Joel Finkelstein¹*, Sally Pak¹, Joshua H. Jennings^{1,2}, Thomas J. Davidson^{1,2}, Emily Ferenczi^{1,3}, Lisa A. Gunaydin^{1,3}, Julie J. Mirzabekov¹, Li Ye^{1,2}, Sung-Yon Kim^{1,3}, Anna Lei¹ & Karl Deisseroth^{1,2,3,4,5}

Cell

Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits

Graphical Abstract

Authors

Talia N. Lerner, Carrie Shilyansky, Thomas J. Davidson, ..., Liqun Luo, Raju Tomer, Karl Deisseroth

Article

Correspondence deissero@stanford.edu

In Brief

Exploring the mammalian brain with an array of intact-brain circuit interrogation tools—including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry—reveals that neurons in the SNc region present different biophysical properties, wiring of inputs and outputs, and activity during behavior, despite signaling through the same neurotransmitter.

Application to the dynamics of development

Trivedi et al Biomedical Optics Express 2015

Application to the dynamics of development - we can measure even faster!

Trivedi et al Biomedical Optics Express 2015 Fahrbach et al Optics Express 2014

Acknowledgements

University of Colorado Denver | Anschutz Medical Campus

Elizabeth Gould Dr. Pirooz Parsa Dr. Diego Restrepo Dr. Sukumar Vijayaghavan Andrew Scallon Dr. Ernesto Salcedo Dr. Radu Moldovan Jennifer Larmore Jasmine Singh Pediatric Heart Lung Center

Gregory Seedorf Dr. Steven Abman

Duncan Ryan Dr. Alan Van Orden